MPTP | |
---|---|
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
|
Identifiers | |
CAS number | 28289-54-5 |
PubChem | 1388 |
ChemSpider | 1346 |
EC number | 248-939-7 |
KEGG | C04599 |
MeSH | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
ChEBI | CHEBI:17963 |
ChEMBL | CHEMBL24172 |
IUPHAR ligand | 280 |
Jmol-3D images | Image 1 |
|
|
|
|
Properties | |
Molecular formula | C12H15N |
Molar mass | 173.25 g/mol |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) |
|
Infobox references |
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin precursor to MPP+, which causes permanent symptoms of Parkinson's disease by destroying dopaminergic neurons in the substantia nigra of the brain. It has been used in study disease models in various animal studies.
While MPTP itself does not have opioid effects, it is related to MPPP, a synthetic opioid drug with effects similar to those of morphine and meperidine (Demerol). MPTP can be accidentally produced during the illicit manufacture of MPPP, which is how its Parkinson-inducing effects were first discovered.
Contents |
Injection of MPTP causes rapid onset of Parkinsonism, hence users of MPPP contaminated with MPTP will develop these symptoms.
MPTP itself is not toxic, and as a lipophilic compound can cross the blood-brain barrier. Once inside the brain, MPTP is metabolized into the toxic cation 1-methyl-4-phenylpyridinium (MPP+) by the enzyme MAO-B of glial cells. MPP+ kills primarily dopamine-producing neurons in a part of the brain called the pars compacta of the substantia nigra. MPP+ interferes with complex I of the electron transport chain, a component of mitochondrial metabolism, which leads to cell death and causes the buildup of free radicals, toxic molecules that contribute further to cell destruction.
Because MPTP itself is not directly harmful, toxic effects of acute MPTP poisoning can be mitigated by the administration of monoamine oxidase inhibitors (MAOIs) such as selegiline. MAOIs prevent the metabolism of MPTP to MPP+ by inhibiting the action of MAO-B, minimizing toxicity and preventing neural death.
MPP+ has quite selective abilities to cause neuronal death in dopaminergic cells, it is presumed through a high-affinity uptake process in nerve terminals normally used to reuptake dopamine after it has been released into the synaptic cleft. The dopamine transporter moves MPP+ inside the cell.
The resulting gross depletion of dopaminergic neurons has severe implications on cortical control of complex movements. The direction of complex movement is based from the substantia nigra to the putamen and caudate nucleus, which then relay signals to the rest of the brain. This pathway is controlled via dopamine-using neurons, which MPTP selectively destroys, resulting over time in parkinsonism.
MPTP causes parkinsonism in primates including humans. Rodents are much less susceptible. Rats are almost immune to the adverse effects of MPTP. Mice were thought to only suffer from cell death in the substantia nigra (to differing degree according to the strain of mice used) but do not show parkinsonian symptoms,[1] however most of the recent studies indicates that MPTP can result in pakinsonism-like syndromes in mice (especially chronic syndromes).[2][3] It is believed that the lower levels of MAO-B in the rodent brain's capillaries may be responsible for this.[1]
The neurotoxicity of MPTP was hinted at in 1976 after Barry Kidston, a 23-year-old chemistry graduate student in Maryland, synthesized MPPP with MPTP as a major impurity, and self-injected the result. Within three days he began exhibiting symptoms of Parkinson's disease. The National Institute of Mental Health found traces of MPTP and other pethidine analogues in his lab. They tested the substances on rats, but due to rodents' tolerance for this type of neurotoxin nothing was observed. Kidston's parkinsonism was successfully treated with levodopa but he died 18 months later from a cocaine overdose. Upon autopsy, destruction of dopaminergic neurons in the substantia nigra was discovered.[4]
In 1982, seven people in Santa Clara County, California were diagnosed with Parkinsonism after having used MPPP contaminated with MPTP. The neurologist J. William Langston in collaboration with NIH tracked down MPTP as the cause, and its effects on primates were researched. The motor symptoms of two of the seven patients were eventually successfully treated at Lund University Hospital in Sweden with neural grafts of fetal tissue.[5]
Langston documented the case in his 1995 book The Case of the Frozen Addicts, which was later featured in two NOVA productions by PBS.[6]
Langston et al.(1984) found that injections of MPTP in squirrel monkeys resulted in parkinsonism, symptoms of which were subsequently reduced by levodopa, a precursor for the neurotransmitter dopamine, currently the drug-of-choice in treatment of Parkinson's. The symptoms and brain structures of MPTP-induced Parkinson's are fairly indistinguishable to the point that MPTP may be used to simulate the disease in order to study Parkinson's physiology and possible treatments within the laboratory. Mouse studies have shown that susceptibility to MPTP increases with age.[7]
Knowledge of MPTP and its use in reliably recreating Parkinson's disease in experimental models has inspired scientists to investigate the possibilities of surgically replacing neuron loss through fetal tissue implants, subthalamic electrical stimulation and stem cell research, all of which have demonstrated initial, provisional successes.
It has been postulated that Parkinson's disease may be caused by minute amounts of MPP+-like compounds from ingestion or exogenously through repeated exposure and that these substances are too minute to be detected significantly by epidemiological studies.[8]
In 2000, another animal model for Parkinson's Disease was found. It was shown that the pesticide and insecticide rotenone causes parkinsonism in rats by killing dopaminergic neurons in the substantia nigra. Like MPP+, rotenone also interferes with complex I of the electron transport chain.[9]
MPTP was first synthesized as an analgesic in 1947 by Ziering et al. by reaction of phenylmagnesium bromide with 1-methyl-4-piperidinone.[10]It was tested as a treatment for various conditions, but the tests were halted when Parkinson-like symptoms were noticed in monkeys. In one test of the substance, two of six human subjects died.[11]
MPTP is used in industry as a chemical intermediate; the chloride of the toxic metabolite MPP+ was turned into the herbicide cyperquat.[11]
|